Removal of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies
نویسندگان
چکیده مقاله:
The occurrence of contaminants in wastewaters, and their behavior during wastewater treatment and production of drinking water are key issues to re-use water resources. The present research aims to remove caffeine from aqueous solutions via adsorption technique, using Multi-Wall Carbon Nanotubes (MWCNTs) as an adsorbent under different experimental conditions. The processing variables such as pH (2-12), contact time (1-30 min), initial concentration of caffeine (2-314 mg/L), temperature (25, 50, 80 °C), and adsorbent mass (0.02-0.15 g) have been investigated with equilibrium and kinetic studies on adsorption of caffeine onto MWCNTs being also developed. Maximum caffeine removal has been obtained at pH=7 and adsorption equilibrium has been achieved in 5 min. The use of pseudo second-order kinetic model with determination coefficient of 99.3% (R2=0.993), has made the adsorption kinetics to be well fitted. The caffeine equilibrium adsorption data have been best fitted to Langmuir-Freundlich Model with a relatively high determination coefficient of 96.5% (R2=0.965) and maximum adsorption capacity of 35.61 mg/g of caffeine on MWCNTs. The thermodynamic parameters display that the adsorption of caffeine onto MWCNTs has been non-spontaneous and endothermic in nature.
منابع مشابه
Removal of Lead (II) from Aqueous Solution Using Cocopeat: An Investigation on the Isotherm and Kinetic
The aim of the present work was to investigate the ability of Cocopeat to remove of lead (II) from aqueous solutions. The effects of different parameters such as particle size, adsorbent dosage, pH, contact time, agitation speed and concentration on the removal process has been investigated. The maximum removal of lead ion (92.5%) took place in the pH range of 4 contact time in 30 minutes a...
متن کاملAdsorption of Malachite Green from Aqueous Solution using Activated Ntezi Clay: Optimization, Isotherm and Kinetic Studies
The adsorption of malachite green from aqueous solution using a local low cost adsorbent, acid activated Ntezi clay, was investigated. The low cost adsorbent was activated with different concentrations of sulphuric acid and the physicochemical properties of the adsorbent were determined and the structural properties were analyzed using XRF and XRD. The adsorption process was studied as a functi...
متن کاملAcid Dyes Removal from textile wastewater using waste cotton activated carbon: Kinetic, isotherm, and thermodynamic studies
The present study aims at investigating the potential of activated carbon AC prepared from waste cotton fiber for the removal of Acid Dyes from aqueous solutions. The prepared activated carbon was characterized by pore structure analysis, Fourier transforms infrared spectroscopy FTIR. Batch adsorption studies were carried out and the effect of experimental parameters such as pH, initial dye con...
متن کاملremoval of lead (ii) from aqueous solution using cocopeat: an investigation on the isotherm and kinetic
the aim of the present work was to investigate the ability of cocopeat to remove of lead (ii) from aqueous solutions. the effects of different parameters such as particle size, adsorbent dosage, ph, contact time, agitation speed and concentration on the removal process has been investigated. the maximum removal of lead ion (92.5%) took place in the ph range of 4 contact time in 30 minutes and i...
متن کاملKinetic and thermodynamic studies of the removal of murexide from aqueous solutions on to activated carbon
The objective of this study was to assess the adsorption potential of activated carbon (AC) asan adsorbent for the removal of Murexide (Mu) from aqueous solutions. The influence of variablesparameters including pH, amount of adsorbent, sieve size of adsorbent, temperature and contact timeon Mu removal was studied. Following optimization of variables, the relation between concentrations ofdye re...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 4
صفحات 539- 552
تاریخ انتشار 2017-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023